[1] Emmrich, E., Lehoucq and Puhst, D., “Peridynamics: a nonlocal continuum theory,” Meshfree Methods for Partial Differential Equations VI, Lect. N. Comput. Sci. Engin., M. Griebel and M. A. Schweitzer, editors, 2013, pp. 45-65, Springer.
[2] Oterkus, E., Diyaroglu, C., Zhu, N., Oterkus, S. and Madenci, E., “Utilization of Peridynamic Theory for Modeling at the Nano-scale,” Nanopackaging: from Nanomaterials to The Atomic Scale, Joachim, C., Poupon, G. and Baillin, X., editors, 2015, pp. 1-16, Springer.
[3] Dell’Isola, F., Della Corte, A., Esposito, R. and Russo, L., “Some Cases of Unrecognized Transmission of Scientific Knowledge: From Antiquity to Gabrio Piola’s Peridynamics and Generalized Continuum Theories,” Generalized Continua as Models for Classical and Advanced Materials Volume 42 of the series Advanced Structured Materials, Altenbach, H. and Forest, S., editors, 2016, pp. 77-128, Springer.
[4] Seleson P., Littlewood D.J. (2018) Numerical Tools for Improved Convergence of Meshfree Peridynamic Discretizations. In: Voyiadjis G. (eds) Handbook of Nonlocal Continuum Mechanics for Materials and Structures. Springer, Cham